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Phase locking in Josephson ladders and the discrete sine-Gordon equation: The effects
boundary conditions and current-induced magnetic fields

B. R. Trees and R. A. Murgescu
Department of Physics and Astronomy, Ohio Wesleyan University, Delaware, Ohio 43015

~Received 26 January 2001; published 20 September 2001!

We report on the stability of phase-locked solutions to ladder arrays of underdamped Josephson junctions
under both periodic and open boundary conditions and in the presence of current-induced magnetic fields. We
calculate the Floquet exponents based on the resistively and capacitively shunted junction~RCSJ! model, as
well as on a simplified model of the ladder that leads to a discrete sine-Gordon~DSG! equation for the
horizontal, current-biased junctions. In the case of zero induced magnetic fields, we find the DSG equation
~commonly applied to parallel arrays! appreciably overestimates the exponents of the full ladder in the over-
damped regime~corresponding to the limit of small junction capacitance,bc), and that difference physically
results from differing spectra for small-amplitude phase oscillations of the DSG and RCSJ equations. mutual
inductance between plaquettes is included we find there are ranges of values for the mutual inductance for
which the ladder is in fact unstable. To understand the cause of the observed instabilities, it is crucial to
consider the behavior of the vertical junctions.

DOI: 10.1103/PhysRevE.64.046205 PACS number~s!: 05.45.Xt, 74.50.1r, 02.40.Xx
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I. INTRODUCTION

Ladder arrays of Josephson junctions are intriguing s
tems for a wealth of reasons: they offer rich dynamical
havior, accessible to both theorists and experimentalists
the field of coupled nonlinear oscillators@1–10# ~with recent
interest in the prediction and observation of discrete ro
breathers@11–15#!; the possibility of phase locking a max
mal subset of junctions suggests their use as microw
sources@16–19#; their complexity is between that of bette
understood one-dimensional serial and parallel arrays
full 2D arrays~e.g., square arrays!, and thus they offer a nice
link between the two geometries; and ladder arrays can,
der circumstances that are partially understood, be mod
by the discrete sine-Gordon~DSG! equation @6,20–22#,
which is itself a source of research interest among m
@23#. In this paper we study the stability of phase-lock
junctions in underdamped ladder arrays biased with unifo
dc bias currents greater than the critical currents of the ju
tions. This means a subset of the junctions will be descri
by a Josephson phase of the formf5vt1 f (t), wherev is
an angular frequency dependent on the bias current andf (t)
is a ~usually! small periodic correction. Such junctions a
often described as being in the whirling mode, in which t
analogy between an individual Josephson junction an
damped, driven pendulum experiencing a gravitatio
torque has been invoked. In the mechanical case,f describes
the angular displacement of the pendulum, andv is the an-
gular speed of its rotational motion.

We report on two aspects of phase locking in ladders:
effects of boundary conditions~periodic versus open! as well
as the effects of current-induced magnetic fields on the
bility of phase-locked solutions in the whirling regime. Als
in a refinement and continuation of work previously repor
@21#, we have attempted to elucidate further the conditio
under which the ladder’s behavior is well described by t
of the DSG equation. We use Floquet theory~see Sec. II! as
the main tool towards these ends.
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The form of the DSG equation in which we are interest
is often described as representing a system of damped, dr
particles that are connected to their nearest neighbors
simple springs and that experience an external potential
is a sinusoidal function of position@24#. In such a situation
the DSG equation is also known as a variation of the w
known Frenkel-Kontorova model@25#, which was proposed
in the study of dislocations in crystals. It is important to no
that, because of the Hooke-like spring force in the DS
equation, the interparticle interactions are described b
convexpotential energy function, i.e.,V(y)}y2, wherey is
the displacement between neighboring particles. A desc
tion of the classical dynamics of underdamped Joseph
junctions, however, often turns to the resistively and capa
tively shunted junction~RCSJ! model@26#. A key feature of
this model is that it leads to an interaction term betwe
neighboring horizontal junctions in a ladder array~see Fig.
1! that is asinusoidalfunction of the difference in the Jo
sephson phases of the junctions. That is, the RCSJ m
contains ‘‘interparticle’’ interactions described by anoncon-
vex function, V(f j 112f j )}cos(fj112fj), wheref j is the
Josephson phase for thej th horizontal junction. Despite this
difference in the structure of the interaction terms betwe
the DSG equation and the RCSJ model, it has been arg
that the two should be dynamically equivalent in the limit
small spatial variations of the Josephson phase differen
along the ladder@27#, basically whenf j 112f j!1 and
cos(fj112fj)'12(fj112fj)

2 @Refs. @6,20##. Such a con-
straint on the phase differences is easily satisfied in
highly underdamped limit, corresponding to large McCu
ber parameters (bc52eIcR

2C/\, whereI c , R, andC are a
junction’s critical current, resistance, and capacitance,
spectively!, and indeed much theoretical and experimen
work comparing ladders and similar~but not identical! par-
allel arrays of junctions to the DSG equation was perform
for bc*50 @2,6,28–31#. Trees and Hussain@21# calculated
the Floquet exponents for phase-locked ladders numeric
for the RCSJ model and compared the results with an a
©2001 The American Physical Society05-1
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B. R. TREES AND R. A. MURGESCU PHYSICAL REVIEW E64 046205
lytic result obtained from the DSG equation for mu
smaller values ofbc , namely, 1,bc&50. In comparing the
Floquet exponents of smallest magnitude, which quantify
lifetime of the longest-lived perturbations to the array, th
found excellent agreement between the two models dow
McCumber parameters of approximately five~depending on
ladder size!. For even smallerbc , the two results differed
quantitatively, but qualitatively both showed a peak in t
smallest exponent as a function ofbc @32#.

The ladder geometry we have chosen to study is show
Fig. 1. The junctions parallel to thex axis ~the horizontal
junctions! have a critical currentI cx , while the vertical junc-
tions have a critical currentI cy . We have allowed for critical
current anisotropy between the horizontal and vertical ju
tions so as to be able to tune the effective coupling betw
neighboring horizontal junctions~see Sec. II!. For simplicity,
however, all other junction parameters, e.g., resistance~R!
and capacitance (C), are assumed identical. A possible r
finement of this work would be to allow for resistive an
capacitive disorder, while satisfying the constraint that
productsI cR andI c /C for each junction be uniform through
out the array@33#. A spatially uniform, dc bias currentI B is
fed into the horizontal junctions on the left and extract
from the right side. We typically allowed for a large dc bi
of I B /I c'10, thereby avoiding any instabilities between t
whirling modes and the small-amplitude Josephson phase
cillations @29,30#. The long direction of the ladder~the y
direction! experiences either periodic or open boundary c
ditions. The number of cells~plaquettes! of the ladder is
denoted byN; typically we have studied ladders withN rang-
ing from 5 to 25.

We consider phase-locked solutions for the horizon
junctions, by which we mean a solution in which the ho
zontal junctions have identical voltage versus time plots

FIG. 1. Ladder array of Josephson junctions with cell sizea.
The horizontal junctions, along the rungs of the ladder, are par
to thex axis, while the vertical junctions are parallel to they axis.
This figure depicts a ladder withN53 cells and eight nodes, four o
which are explicitly labeled. A dc bias currentI B is injected at each
node on the left side and extracted from the right side. We ass
either periodic or open boundary conditions along the long direc
of the ladder.
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fact, if one initializes the superconducting phases and
voltages at the nodes of the ladder randomly, it is ea
determined from the numerical output of our code that
voltages, which are periodic in time, have indeed synch
nized, i.e., phase locked, within a relatively few periods.
test the stability of phase-locking to mechanical pertur
tions, we calculate the Floquet exponents~see Sec. II! for
these solutions. We do so both numerically for the RC
model, and analytically. Frequently, our analytic results
based on simplifying the dynamics of the full ladder to th
of a DSG equation. For both the periodic and open ladd
in the absence of induced magnetic fields, we are able to
obtain analytic results for the Floquet exponents direc
from the RCSJ equations as well as from the DSG equat
We find these two analytic results agree well in the largebc
limit ~underdamped regime!, but differ substantially in the
overdamped (bc→0) regime. Furthermore, this difference
considerably more pronounced in the case of periodic l
ders compared to open ladders~see Fig. 2!. Physically, we
find that differing spectra for small-amplitude phase oscil
tions between the two geometries accounts for this behav

We have also studied the effects of induced magn
fields due to currents flowing in the plaquettes on the sta
ity of phase-locked solutions. We do so in a controlled ma
ner, first by considering only the self-inductance of a giv
plaquette. This enables us, in essence, to extend Fig. 2
map out the minimum Floquet exponent as a function
junction capacitanceand loop self-inductance~see Fig. 8!.
We are also able to calculate the exponents analytic
based on the DSG equation, and we discuss the agree
between the numerical and analytical results in this case.
then include nearest-neighbor mutual inductance effects.
prisingly, for a given ladder size, we find ranges of values
the mutual inductance over which the ladder exhibits u
stable behavior, as evidenced by voltages and phases
grow exponentially with time. This is a geometrical effec
depending on the number of plaquettes and the size of
mutual inductance. Analytic work in this case, depending
both the DSG equation and the RCSJ equations, sheds
onto the cause of this instability. Last, we allow for lon
range mutual inductance between plaquettesj and k, by al-
lowing the strength of the mutual inductance to fall off e
ponentially with distance, i.e., we assume a mut
inductance of the formM jk5Me2su j 2ku, where distances are
measured in units of the plaquette sizea, and s tunes the
range of the inductance. This is analogous to the inclusion
Kac-Baker long-range interactions in the DSG equation@23#.
We still find the instability regions as for the case of neare
neighbor inductance only, but even for those ranges of va
of M for which phase locking still occurs, the degree
stability of that phase locking isreducedas the range ofM jk
is increased, i.e., ass→0. In general, we find the inclusion
of mutual inductance has a profound effect on the ability
horizontal junctions in the ladder to phase lock.

The remainder of this paper is organized as follows.
Sec. II we describe the numerical calculation of the Floq
exponents based on the RCSJ model and in the absen
induced magnetic fields. We also compare the effects of
riodic versus open boundary conditions on the exponents.
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PHASE LOCKING IN JOSEPHSON LADDERS AND THE . . . PHYSICAL REVIEW E 64 046205
compare numerical results with two sets of analytic resu
one based on the RCSJ equations for the full ladder and
other on a DSG equation. This comparison sheds light on
differing dynamics of the two models. In Sec. III we discu
the Floquet exponents in the presence of self-induced m
netic fields. In this case our numerical work is based on
RCSJ model, and our analytic work is based mainly on
DSG equation for the horizontal junctions. We discuss
degree to which the numerical and analytical results agree
Sec. IV we also include the contribution to the induced m
netic field in a given plaquette due to currents flowing
neighboring plaquettes. It is at this point that we observe,
the first time in our work, unstable behavior, in which t
Josephson phase differences across both the horizonta
vertical junctions grow exponentially with time. Section
discusses the effects of long-range mutual inductance
which the induced magnetic field in a given plaquette is
fected by currents flowing in all other plaquettes in the la
der. In Sec. VI we summarize our results.

II. BOUNDARY CONDITIONS ÕNO INDUCED FIELDS

A. RCSJ model

It is expedient to use a system of dimensionless variab
Let the characteristic time scale for a junction betc
[\/2eIcxR, so that we can define a dimensionless time va
able,t[t/tc . The dimensionless dc bias current entering
leaving nodej is i B, j[I B, j /I cx , where we are assuming un
form bias currents. Referring to Fig. 1, conservation
charge at thej th node yields

i B, j1(̂
k&

F i c, jk sin~u j2uk!1
d

dt
~u j2uk!

1bc

d2

dt2
~u j2uk!G50. ~1!

Here u j is the Josephson phase atnode j, and i c, jk
[I c, jk /I cx is the dimensionless critical current of the jun
tion between nodesj and k. The sum runs over all neares
neighbor nodes toj. We allow for critical current anisotropy
in that I cx andI cy need not be equal. In fact we will define
measure of the critical current anisotropy asa[I cy /I cx . The
McCumber parameterbc was defined in Sec. I. The array
not subjected to anyexternalmagnetic field. Equation~1! is
combined with the standard Josephson voltage expressio
nodej, Vj5(\/2e)(du j /dt), which if we define a character
istic voltageVc[I cxR, can be written in dimensionless form

v j[
Vj

Vc
5

du j

dt
. ~2!

We have solved Eqs.~1! and ~2! numerically using the
fourth-order Runge-Kutta method, with~dimensionless! time
steps ofDt50.001. Typically, the code was run for at leas
time of t total5500 000 to allow the horizontal junctions t
phase lock. Then the Floquet~stability! analysis was per-
formed, which we now describe.
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Suppose thatu0 j (t) is a solution to Eqs.~1! and ~2!. We
perturb the phase at nodej by an amounth j (t) so that the
new phase isu j (t)5u0 j (t)1h j (t). Linearizing Eq.~1! with
respect toh j , we arrive at the following:

(̂
k&

F i c, jk cos~u0 j2u0k!~h j2hk!1
d

dt
~h j2hk!

1bc

d2

dt2
~h j2hk!G50. ~3!

Because the coefficients of theh j are periodic in time, with
period T/tc in dimensionless units, we can apply Floque
theorem@34#, which tells us that there exist solutions to E
3 of the form

FIG. 2. Magnitude of the minimum Floquet exponent vs t
dimensionless junction capacitance for four different ladder siz
The bias current was fixed ati B510, and the critical-current anisot
ropy factor wasa51. The solid lines are the result of an analyt
calculation@Eq. ~14!# based on the full RCSJ equations. The dash
lines demonstrate, forN510, the analytic result based on a DS
equation for the horizontal junctions.~a! Periodic boundary condi-
tions. ~b! Open boundary conditions.
5-3
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B. R. TREES AND R. A. MURGESCU PHYSICAL REVIEW E64 046205
h j S t1
T

tc
D5mh j~t!, ~4!

wherem is a ~possibly complex! number called the Floque
multiplier. We are interested in the case whenumu,1, which
corresponds to perturbations that diminish with time.
course,umu.1 denotes instability in that perturbations gro
over time, and the special case ofumu51 is called neutral
stability. There is a corresponding Floquet exponentl,
which is related to the Floquet multiplier by

m5elT5e(ltc)(T/tc). ~5!

The condition umu,1 corresponds to Re(l),0. We can
think physically of the exponents~or multipliers! as describ-
ing the stability of the characteristic modes of the array.At
least one of these exponents must equal zero, which i
result of the invariance of Eq.~1! to a time translation. Ex-
cluding the exponent of zero, we are interested in the rem
ing exponent ofsmallest magnitude, ulminu, as that tells us by
what factor the longest-lived mode of the array decays~or
grows! in one period after a perturbation@35#.

We have performed a linear stability analysis for ladd
of size N510, 15, 20, and 25 with 1<bc&50 andi B510.
Consider Fig. 2~a! that shows2Re(lmintc) vs bc for a51 in
a ladder withperiodic boundary conditions. The behavio
observed here has been previously reported@21#, so we will
only summarize the key results. There is a general trend
decreasingbc of increasing stability~as demonstrated by
growing magnitude of the Floquet exponent! down to a
crossover value of the McCumber parameterbc* (N), which
is dependent upon ladder size. For decreasingbc below
bc* (N), the phase locking takes increasingly longer to
cover from a mechanical perturbation. As is seen from
figure, this crossover behavior of the stability is a sharp fu
tion of bc . Furthermore, above the crossover@bc.bc* (N)#,
the Floquet exponent has a simple form, namely, Re(lmintc)
521/2bc , which holds for all ladder sizes and bias curren
we have looked at~as long as the ladder is in the whirlin
regime, of course!. For reasons discussed previously@21#, we
find it convenient to describe the ladder’s behavior as ov
damped forbc,bc* (N) and underdamped forbc.bc* (N).
Physically, the sharp change in stability atbc* (N) is due to
one of the small-amplitude, oscillatory modes of the lad
becoming less efficient at damping out perturbations.

Figure 2~b! shows the minimum Floquet exponents for
ladder withopenboundary conditions. A comparison of Fig
2~a! and 2~b! shows two important differences. The positio
of the crossover valuebc* (N) for a given ladder size is in
creased in the open ladder relative to the periodic lad
@note the different horizontal scales in Figs. 2~a! and 2~b!#,
i.e., less damping per junction is needed, for a given lad
size, in the open ladder before the crossover to overdam
behavior results. Also, in the overdamped regim
uRe(lmintc)u is smaller by approximately a factor of 0.25
the open ladder than in its periodic counterpart. That is,
phase-locked solutions for the open ladder in the ov
damped regime areless stablethan for the periodic ladder.
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Figures 3~a! and 3~b! compare the exponents for both p
riodic and open ladders as a function of the critical curr
anisotropya for N510 and 15 and forbc51.0. In this case,
asa is decreased, there is a crossover valuea* (N) that is a
function of ladder size. Fora.a* (N) the minimum expo-
nent is constant at21/2bc , while for a,a* (N) the expo-
nent decreases towards zero asa approaches zero. A Floque
exponent of zero~or a Floquetmultiplier of unity! denotes
neutral stability. We would expect the array to exhibit a hi
degree of neutral stability in the limit in which the horizont
junctions were decoupled. This is just whata→0 represents.
So the behavior of the exponents forI cy!I cx is as expected.
As was the case in Figs. 2~a! and 2~b!, we see that fora
,a* (N) the open ladder is less stable than the perio
ladder. Further insight into the behavior exhibited in bo
Figs. 2 and 3 is gained by considering the analytic calcu
tion of the exponents, which we now discuss.

FIG. 3. Minimum Floquet exponent for overdamped ladde
(bc51) vs the critical-current anisotropy for two different ladd
sizes. The exponent equals21/2bc independent ofN anda for a
greater than some crossover value,a* (N), which is dependent on
ladder size. The solid lines are the result of an analytic calcula
@Eq. ~14!# based on the full RCSJ equations. The dashed line d
onstrates, forN510, the analytic result based on a DSG equat
for the horizontal junctions.~a! Periodic boundary conditions.~b!
Open boundary conditions.
5-4
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B. Analytic results

We find it convenient at this point to introduce a change
notation. Letf j represent the Josephson phase for thej th
horizontal junction. For example, based on Fig. 1,f15u1
2u2. Also, letc1 j (c2 j ) be the Josephson phase for a verti
junction corresponding tox50(x5a), i.e.,c115u12u3 and
c215u22u4. We shall take advantage of the well-know
symmetry of the array that results inc1 j52c2 j , as can be
verified from the RCSJ equations@36#, to simplify the analy-
sis. Applying conservation of charge to the left node of t
j th horizontal junction results in

i B2a sinc j 212
dc j 21

dt
2bc

d2c j 21

dt2
2sinf j2

df j

dt

2bc

d2f j

dt2
1a sinc j1

dc j

dt
1bc

d2c j

dt2
50. ~6!

In addition, we include the constraint that in the absence
any external or induced magnetic flux through a giv
plaquette, the sum of the gauge-invariant phase differen
around a plaquette must vanish@37#. In our case, for the
plaquette consisting of the horizontal junctionsj and j 11
and the corresponding vertical junctions we have

f j2f j 1112c j50, ~7!

where we have made the definitionc1 j52c2 j[c j . We
then solve Eq.~7! for c j and substitute into Eq.~6!. Simi-
larly, we can write the phase constraint for the plaque
consisting of horizontal junctionsj and j 21, solve forc j 21,
and substitute into Eq.~6!. The result is an equation depen
ing on phase differences for only the horizontal junctions

bc

2
¹2S d2f j

dt2 D 1
1

2
¹2S df j

dt D2bc

d2f j

dt2
2

df j

dt
2sinf j

1aFsinS f j 112f j

2 D1sinS f j 212f j

2 D G1 i B50,

~8!

where we have introduced the discrete Laplacian nota
¹2f j[ f j 1122 f j1 f j 21 for a function f j defined on the ar-
ray.

Note that a DSG equation results from Eq.~8! by ignoring
the Laplacians of the time derivatives and also by lineariz
the sine terms in the square brackets. Such a simplificatio
based on the assumption that the Josephson phase differ
for the horizontal junctions are only weak functions of po
tion as one moves along the ladder. Such simplifications
sult in

bc

d2f j

dt2
1

df j

dt
1sinf j2

a

2
¹2f j2 i B50. ~9!

It is worthwhile to understand better under what conditio
Eqs. ~8! and ~9! are indeed dynamically equivalent. On
probe of such conditions is the set of Floquet exponents
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result from these equations. A previous calculation of
exponents for Eq.~9! based on periodic boundary condition
has been discussed elsewhere@21#. We shall merely quote
the result,

Re~lm
(DSG)tc!52

1

2bc
6

1

2bc
ReA124bc@vm

(DSG)#2,

~10!

where @vm
(DSG)#252a sin2(mp/N)(m50,1, . . . ,N21) is a

set of characteristic, or normal-mode, frequencies for apar-
allel array of N junctions. That is,vm

(DSG) describe the fre-
quencies of the small-amplitude phase oscillations of the
derdamped ladder array in which thevertical junctions have
been shorted. The agreement of Eq.~10! with the numerical
exponents for thefull RCSJ ladder is good in the unde
damped regime@bc.bc* (N)#, but there is a quantitative dif
ference in the overdamped regime, as observed in Fig.~a!
for N510. @The dashed line represents the prediction of E
~10!.# Some physics, that becomes increasingly importan
the overdamped limit, was discarded in simplifying Eq.~8!
to get to Eq.~9!. That physics is the spatial variation of th
f j , and their time derivatives, along the ladder.

We have calculated the Floquet exponents analytically
Eq. ~8! directly. As described in Sec. II and in Ref.@21#, we
let f j5f0 j1h j and linearize with respect to theh j . We
also assume that the unperturbed phases are growing lin
with time at a common rate, i.e.,f0 j5vt, as is characteris-
tic of the whirling regime. The resulting equation, linear
the h j , is

bc

2
¹2S d2h j

dt2 D 1
1

2
¹2S dh j

dt D2bc

d2h j

dt2
2

dh j

dt
2cos~vt!h j

2
a

2
¹2h j50. ~11!

Based on the assumption of periodic boundary conditio
we expand theh j in an appropriate Fourier series

h j5 (
m50

N21

Am~t!e2p im j /N ~12!

and substitute back into Eq.~11!. After some algebra and
using the fact that the Fourier modes are independent of e
other we arrive at a differential equation for the Fourier c
efficients

F112 sin2S mp

N D G H d2Am

dt2
1

1

bc

dAm

dt J
1

1

bc
F2a sin2S mp

N D1cos~vt!GAm50. ~13!

This is a Mathieu’s equation with damping and is almo
identical in form to that studied in Ref.@21# for the periodic
DSG equation. A key difference with this new result, ho
ever, is the presence of them-dependent sine terms multiply
ing the time derivatives of theAm . It turns out that these
5-5
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terms play an important role in determining the Floquet
ponents for smallbc . An analysis of Eq.~13! similar to that
described in Ref.@21# yields the result

Re~lm
(RCSJ)tc!52

1

2bc
6

1

2bc
ReA124bc@vm

(RCSJ)#2,

~14!

where now the characteristic frequencies are given by

@vm
(RCSJ)#25

2a sin2S mp

N D
112 sin2S mp

N D . ~15!

We see that the inclusion of the Laplacians¹2(d2h j /dt2)
and¹2(dh j /dt) in Eq. ~11! has resulted in a new, effectiv
l
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-set of normal-mode frequencies. In effect, the spatial va
tion of the time derivatives has renormalized the frequenc
for a parallel array by a factor of@112 sin2(mp/N)#21. It is
Eq. ~14! that we now compare with the numerical results f
the exponents, as shown in Figs. 2 and 3@38#.

Consider the set of all possible exponents resulting fr
Eq. ~14! when the normal mode index runs over its rang
0<m<N21. For them50 mode, we see that the two po
sible values are Re(l0tc)50, 21/bc , where, in fact,
21/bc is the largest possible magnitude exponent one
obtain from Eq. ~14! and represents the fastest decayi
mode of the array. For all modesm.0, the possible expo-
nents can be divided into two categories, depending
whether the argument of the square root in Eq.~14! is less
than or greater than zero. We shall refer to the case of w
the argument of the square root is less~greater! than zero as
the ‘‘overdamped’’~‘‘underdamped’’! regime. Thus we have
Re~lm
(RCSJ)tc!5H 2

1

2bc
if 4bc@vm

(RCSJ)#2.1

2
1

2bc
@16A124bc@vm

(RCSJ)#2# if 4bc@vm
(RCSJ)#2,1.

~16!
ent
s is

ith
t

the
or-
if-

p-
up-
act,
al-

im-

on
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by
ers,
Figures 2~a! and 3~a! offer a comparison of the numerica
and analytic results for the Floquet exponents for sev
periodic ladder sizes and zero external field. The anal
results, shown as line plots, were obtained by plotting, fo
given bc , a, and N, the exponent from Eq.~16! with the
smallest magnitude. We see that the agreement is excelle
For further comparison we also show~for N510) the ana-
lytic result, Eq.~10!, based on the DSG equation. It is cle
that the DSG result overestimates the exponents in the o
damped regime. This difference is due to neglect~in the DSG
equation! of the Laplacian terms of the time derivatives
mentioned in the previous paragraph. Clearly, the spa
variation represented by these terms and the approp
spectrum for small amplitude phase oscillations (vm

(RCSJ) vs
vm

(DSG)) are important in understanding the dynamics in
overdamped regime.

A similar analytic analysis can be performed for the op
ladder. The key difference is the form of the Fourier ser
used to represent the perturbations@31#:

h j5 (
m50

N218

Am~t!cosFmpS j 2
1

2D
N11

G , ~17!

where the prime on the summation means there is a facto
one-half in front of the sum for them50 mode only. The
same method applied to the periodic ladder leads to an e
tion of the same form as Eq.~14! but with the following
characteristic frequencies
al
ic
a

.

er-

al
te

e

n
s

of

a-

@vm
(RCSJ,open)#25

2a sin2S mp

2@N11# D
112 sin2S mp

2@N11# D
. ~18!

These frequencies result in the solid lines of Figs. 2~b! and
3~b!. As in the case of the periodic ladder, the agreem
between this new analytic result and the numerical result
excellent.

Further observation of Fig. 2~b! shows that~for N510)
the analytic result based on the DSG equation, w
@vm

(DSG)#252a sin2(mp/2@N11#), and the analytic resul
based on Eq.~18! do not differ significantly. This is in con-
trast to the periodic ladder of the same size. In effect,
difference in boundary conditions has led to different ren
malization factors for the characteristic frequencies, with d
ferent sine terms in the denominators.@Compare Eqs.~15!
and ~18!.# In the open ladder, the extra factor of 2 that a
pears in the denominator of the argument of the sine s
presses its importance for all but the smallest ladders. In f
a quantitative way to gauge the importance of the renorm
ization of the characteristic frequencies and in turn the
portance of the Laplacian terms in Eq.~11! is to calculate the
relative difference between the minimum exponents based
Eqs.~14! and~10! ~both analytic results! for several different
values ofN andbc and for both periodic and open ladder
That is, we plotuRe(lmin

(RCSJ)tc)2Re(lmin
(DSG)tc)u/uRe(lmin

(RCSJ)tc)u
vs bc for N510, 15, 20, and 25~see Fig. 4!. We see that the
two sets of analytic results for periodic ladders can differ
as much 50% in the overdamped regime. For open ladd
5-6
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the maximum relative difference is at most roughly half th
of their periodic counterparts. Furthermore, for a given va
of N, the open ladders yield a sharp peak in the relat
difference as a function ofbc , whereas the periodic ladder
experience a broader range ofbc values over which the dif-
ference is sizeable. The upshot is that the geometry,
boundary conditions, of the array has a significant eff
upon the stability of phase-locked solutions in the ov
damped regime. In addition, an analysis of the ladder ba
on the DSG equation will overestimate the Floquet ex
nents at smallbc . This is because the DSG equation negle
spatial variations of the derivativesdf j /dt and d2f j /dt2

along the ladder.

III. SELF-INDUCTANCE

A. Numerical results

Several groups over the last decade have discussed
importance of including current-induced magnetic fields in
study of the static and dynamic properties of Josephson ju

FIG. 4. Relative difference between the two analytic resu
@Eqs.~10! and ~14!# for the minimum Floquet exponent as a fun
tion of the dimensionless capacitance of the junctions.~The results
correspond toa51.! Re(lmintc) represents the result@Eq. ~14!#
based on the full RCSJ equations, while Re(lmin

[DSG]tc) represents the
result @Eq. ~10!# based on a DSG equation for the horizontal jun
tions. ~a! Periodic boundary conditions.~b! Open boundary condi-
tions.
04620
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tion arrays@36,39–45#. It is natural then to ask about th
effects of such induced magnetic fields on the stability
phase-locked solutions. We address this issue in Secs. II
of the paper. We start by considering each plaquette i
periodic ladder to be described by some self-inductanceL.
We also adopt a mesh current approach@46#, in which we
assume that thej th plaquette is described by a well-define
circulating mesh currentI j ~see Fig. 5!. Applying conserva-
tion of charge to the upper left node of thej th plaquette
gives, in dimensionless units,

i B1 i j2 i j 215sinf j1
df j

dt
1bc

d2f j

dt2
, ~19!

where i j[I j /I cx is the dimensionless mesh current
plaquettej. Similarly, the vertical junction on the left side o
plaquettej is described by

i j5a sinc j1
dc j

dt
1bc

d2c j

dt2
, ~20!

where as beforea[I cy /I cx measures the critical-current an
isotropy in the ladder. Finally, the constraint on the Jose
son phases yields~for plaquettej ) @37#

f j2f j 1112c j52
2p

F0
F j , ~21!

whereF0[h/2e is the magnetic flux quantum, andF j is the
total magnetic flux passing through plaquettej. In the ab-
sence of any external flux, and considering only the s
inductance of a given plaquette means thatF j5LI j . So Eq.
~21! can be written as

s

-

FIG. 5. Two plaquettes in a ladder array withN plaquettes (N
.2). f j represents the Josephson phase for thej th horizontal junc-
tion, which also comprises the top junction in thej th plaquette.
c1 j (c2 j ) represents the Josephson phase for the vertical junc
on the left~right! side of thej th plaquette.I j is the mesh current
circulating in thej th plaquette.
5-7
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f j2f j 1112c j52
2pLI cx

F0
i j ,

and introducing a dimensionless loop inductancebL
[2pLI cx /F0 gives us the following useful form of the
phase constraint equation:

f j2f j 1112c j52bLi j . ~22!

The next step is to solve Eq.~22! for i j and substitute into
Eq. ~19!. Also, by making the change of notationj→ j 21 in
Eq. ~22! we obtain a constraint equation fori j 21 in terms of
phase differences that can also be substituted into Eq.~19!.
The resultant equation is independent of the mesh curr
and takes the form

bc

d2f j

dt2
1

df j

dt
1sinf j2

1

bL
~¹2f j22@c j2c j 21# !2 i B50.

~23!

Eliminating the mesh currenti j from Eq. ~20! yields

bc

d2c j

dt2
1

dc j

dt
1a sinc j1

1

bL
~f j2f j 1112c j !50.

~24!

Equations ~23! and ~24! were solved numerically for
f j , c j , df j /dt, anddc j /dt. Next, to find the Floquet ex
ponents we perform a linear stability analysis. Letf j5f0 j
1h j and c j5c0 j1d j , wheref0 j and c0 j are solutions to
Eqs. ~23! and ~24!. Substituting these perturbed phases in
Eqs.~23! and ~24! and linearizing with respect toh j andd j
gives

bc

d2h j

dt2
1

dh j

dt
1~cosf0 j !h j2

1

bL
~¹2h j22@d j2d j 21# !

50 ~25!

and

bc

d2d j

dt2
1

dd j

dt
1a~cosc0 j !d j1

1

bL
~h j2h j 1112d j !50.

~26!

The resulting minimum Floquet exponents, calculated
merically based on Eqs.~23!–~26! as a function of the di-
mensionless loop inductancebL , are shown in Fig. 6 for
periodic ladders. Figure 6~a! corresponds to a ten-cell ladde
with bc510 and three different values of the critical-curre
anisotropy,a. ~All the numerical values of the exponen
shown in Fig. 6 were calculated by initializing the phases
zero and the voltages randomly.! We would roughly catego-
rize the results as belonging to one of three different regim
in the capacitive regime~valid for bc*bL) we find the mini-
mum Floquet exponent equal to21/2bc independent ofbL ;
in the inductive regime~valid for bL@bc! we find the expo-
nent is proportional to21/bL , independent ofbc ; and then
for bL'bc both the junction capacitance and loop indu
04620
ts

o

-

t

o

s:

-

tance affect the size of the exponent. Also note that the
ponents exhibit a dependence on the value ofa for 15&bL

&30 andbc510. Specifically, forbL values in this range, as
a is decreased the degree of stability is reduced, as is
denced by a smaller exponent. Figure 6~b! shows similar
behavior forbc530. Figure 7 shows the results of the sam
calculations for open ladders as opposed to periodic ladd
A comparison of Figs. 6 and 7 in the inductive regime sho
that the exponents are larger in magnitude for the perio
ladder, demonstrating~as in Sec. II! that, generally speaking
the periodic ladder is more stable than the open ladder.
worth noting that forbc510 andbc530 both types of lad-
ders, periodic and open, show21/2bc behavior in the ca-
pacitive regime. Although we have not checked explicit
we would expect that for small enough capacitance (bc
&2), the periodic and open ladders would have differi
exponents even in the capacitance regime, with the perio
ladder more stable.

To help the reader visualize the dependence of the Floq
exponent on both the junction capacitance and the loop
ductance, consider Fig. 8, which represents the minim

FIG. 6. Minimum Floquet exponent vs dimensionless se
inductance of a plaquette fori B510 and three different values o
the critical-current anisotropy in a ladder withN510 andperiodic
boundary conditions. The solid line represents an analytic re
@Eq. ~28!# based on a DSG equation for the horizontal junctio
The dashed line is the largebL limit of the analytic result, where
v1

(L) is one of the normal-mode frequencies of a parallel array
junctions.~a! bc510. ~b! bc530.
5-8
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exponent as a function of bothbc and bL for a periodic
ladder withN55. This plot was produced by calculating th
exponents for hundreds of different combinations of the t
parameters. Our plotting program then interpolated betw
the data points to produce the surface shown in the fig
Inspection reveals that the behavior represented in Fig
and 7 is obtained by merely taking an appropriate cro
sectional slice through Fig. 8.

B. Analytical results

First-order versions of Eqs.~23! and ~24! in the over-
damped limit (bc→0) have been studied by Filatrella an
Wiesenfeld@36# via an iterative approach. We employ a sim
lar method here. To make analytic progress towards un
standing the behavior of Figs. 6 and 7, we start by neglec
the phase differences associated with thevertical junctions in
Eq. ~23!. As partial justification for this step, we check n
merically that over a wide range of values ofN, bc , and
bL , and for random initial values of all the phases, the v
tical phase differences,c j , do indeed approach zero. In th
limit, Eq. ~23! reduces to a DSG equation for thef j ,

FIG. 7. Minimum Floquet exponent vs dimensionless se
inductance of a plaquette fori B510 and three different values o
the critical-current anisotropy in a ladder withN510 and open
boundary conditions. The solid line represents an analytic re
@Eq. ~28!# based on a DSG equation for the horizontal junctions.~a!
bc510. ~b! bc530.
04620
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bc

d2f j

dt2
1

df j

dt
1sinf j2

1

bL
¹2f j2 i B50. ~27!

Note that in contrast to Sec. II, where the critical-curre
anisotropy controlled the coupling strength of neare
neighbor horizontal junctions, in this case of a self-induct
ladder the inverse of the loop inductance determines the c
pling strength. Also, it is important to remember that Eq.~27!
is only an adequate reflection of the of the dynamics of
ladder in the case whenc j→0, i.e., the vertical junctions are
inactive.

Because Eq.~27! has the form of a DSG equation for th
phasesf j we can calculate analytically a corresponding
of Floquet exponents in a manner identical to that descri
in Sec. II. The result is

Re~lm
(L)tc!52

1

2bc
6

1

2bc
ReA124@vm

(L)#2S bc

bL
D ,

~28!

where the characteristic frequencies are@vm
(L)#2

54 sin2(mp/N) (m50,1, . . . ,N21) for a periodic ladder.
Equation~28! yields the solid lines in Figs. 6 and 7. For th
open ladder the frequencies are @vm

(L,open)#2

54 sin2(mp/2@N11#). With the aid of Eq.~28! we can iden-
tify more precisely the capacitive and inductive regimes
the ladder. In the capacitive regime, 4@vm

(L)#2bc /bL.1 or
bc.bL/4@vm

(L)#2 such that Re(lm
(L)tc)521/2bc , indepen-

dent of bL . In the inductive regime, 4@vm
(L)#2bc /bL!1 or

bL@4@vm
(L)#2bc such that theminimum Floquet exponent

follows from Eq.~28!

-

lt

FIG. 8. Minimum Floquet exponent vs dimensionless juncti
capacitance and dimensionless loop self-inductance fori B510 and
N55 in a ladder with periodic boundary conditions. The crosso
ridge demarking the border between the capacitive and induc
regimes is visible roughly through the middle of thebc-bL plane.
This plot was produced by numerically evaluating the minimu
exponent for hundreds of combinations ofbc andbL values.
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Re~lmin
(L) tc!'2

@v1
(L)#2

bL
, ~29!

independent ofbc . Note that Fig. 6 includes a graph of th
limiting result @Eq. ~29!# for the inductive regime~see the
dashed line!.

A comparison of the numerical and analytical results
Figs. 6 and 7 show good agreement in the capacitive
inductive regimes, but forbc'bL there is a noticeable dis
crepancy. It is important to note that our analytic result
independent of the critical-current anisotropya since that
affects thef j only through coupling with thec j . Presum-
ably, then, the difference between the analytical and num
cal results is due to our neglecting the vertical junctions
tirely. Thus we turn to Eq.~26!.

We now assume that the perturbations to the vert
phase differencesd j can be expanded in a Fourier series

d j5 (
m50

N21

Bm~t!e2p im j /N, ~30!

and we also use our previous Fourier series for theh j ~see
Sec. II! to write Eq. ~26! as a differential equation for th
coefficientsBm and theAm . At this point, we also take into
account that when running our code that calculates the e
nents numerically we always initialized the phases to ze
That means that we expectc0 j5c0, independent ofj. ~Re-
call, that as part of the numerical process for calculating
exponents, we integrate Eqs.~23! and ~24! for at least
500 000 time steps before applying the perturbation.c0 j rep-
resents the phase difference across thej th vertical junction
just before the perturbation. Numerical evidence sugges
that if the phases are initialized uniformly, they remain u
form along the ladder~modulo 2p). Also, recall that the
voltagesacross all the junctions throughout the array are
tialized randomly.! The resulting equation describing th
Fourier modes of the vertical junctions is

bc

d2Bm

dt2
1

dBm

dt
1S a cosc01

2

bL
DBm

5
1

bL
~e2p im/N21!Am . ~31!

Now according to Floquet theory@34#, the Am(t), which
describe the perturbed horizontal junctions, can be writte
the form

Am~t!5elm
(L)tctrm~t!, ~32!

where in our caserm(t) is an unknown, periodic function o
time. That is, although we have been able to solve for
Floquet exponents,lm

(L) @Eq. ~28!#, we do not know the form
of the rm , and so the right side of Eq.~31! is not a com-
pletely known function of time. With the hope of learnin
somethingabout the behavior of the vertical junctions we c
solve the homogeneous version of Eq.~31!. That is, we set
the right side to zero and assume a solution of the fo
04620
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Bm(t)5eLtct. The resulting quadratic equation for the exp
nentsL can be solved to give

L (6)tc52
1

2bc
6

1

2bc
A124bcS a cosc01

2

bL
D .

~33!

Note that the solutions for theBm will exponentially grow
with time and hence represent an instability in the ladder
L (1)tc.0. This can occur if

a,2
2

bL cosc0
, ~34!

where we remind the reader thatc0 is the phase difference
across a vertical junction just prior to the perturbation. On
again, numerical evidence suggests that if the phases are
tialized to zero, thenc0'0 mod(2p). Thus we can say
cosc0'1 in Eq.~34!. It is clear that the inequality can neve
be satisfied sincebL anda are non-negative quantities, an
the solution to the homogeneous part of Eq.~31! describes
exponentiallydecayingfunctions of time.

It remains to find a particular solution to Eq.~31!. Unfor-
tunately, this is not possible since the full functional form
theAm is unknown. We can guess, however, that any parti
lar solution will have the same general form as that of
Am , namely, a decaying exponential function of time mul
plying a periodic function of time@see Eq.~32!#. The full
solution to Eq.~31! is thus a sum of the homogeneous a
particular solutions, i.e., a sum of exponentially decay
solutions where the set of all possible ‘‘decay rates’’ is giv
by Eqs.~28! and ~33!. The upshot is that an analytic resu
for the Floquet exponents for the fullcoupledEqs.~25! and
~26! has yet to be attained. Such a solution is required
explain thea dependence of the numerical results seen
Figs. 6 and 7.

One useful check of our analytic work on the vertic
junctions is to see if the analytic exponents obtained for
homogeneous version of Eq.~31! describeany of the set of
4N ~for periodic ladders! exponents calculated numerical
directly from Eqs.~25! and~26!. For example, Table I gives
the exponents for a five-cell periodic ladder withbc51, bL
550, anda50.1, corresponding to a region where the n
merical and analytical results forlmin differ. We can easily
identify the exponents with approximate values of zero a
21/bc . These would be expected based on Eq.~28! for the
m50 mode. A quick check of the remaining values in Tab
I shows that all but two~marked by an asterisk! are doubly
degenerate. It turns out that these two nondegenerate e
nents are well described by Eq.~33!. ~Note that neither of
these exponents appear in Figs. 6 and 7, since they are
the exponents of minimum absolute value.! This is demon-
strated by Fig. 9, which shows excellent agreement, a
function ofa, between this particular subset of the numeric
exponents and the analytic result based on the vertical ju
tions. So Eq.~33! describes some aspects of the dynamics
5-10
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the array; the decay rates represented in that result, how
merely do not describe the longest-lived mode of the arr

IV. NEAREST-NEIGHBOR MUTUAL INDUCTANCE

A. Numerical results

In this section we study the effects of nearest-neigh
mutual inductance on the stability of phase-locked soluti
in periodic ladders. Let each loop have a positive se
inductanceL as in Sec. III and a negative nearest-neighb
mutual inductance,2M , whereM.0 andM,L @43#. The
mesh current analysis of Sec. III can be extended in
straightforward way to handle mutual inductance. In fa
Eqs. ~19! and ~20! are unchanged. Equation~21!, however,
must now account for the fact that the total flux throu
plaquettej depends on the mesh currentsI j and I j 61:

f j2f j 1112c j52
2p

F0
~2MI j 211LI j2MI j 11!.

~35!

It is useful to introduce a matrix notation to represent
equations compactly. LetfW be anN-component column ma
trix composed of thef j . Similarly, letcW represent the phas
differences across the vertical junctions, andIW represents the
N mesh currents. Equation~35! can now be written as

TABLE I. The Floquet exponents obtained from a numeric
solution of Eqs.~25! and ~26! for a periodic ladder withN55, i B

510, bL550, bc51, anda50.1. There are 4*N520 characteris-
tic modes of such an array, each mode having a correspon
Floquet exponent. The extremal exponents have values of zero~to a
good approximation! and 21/bc . All other exponents, except th
two marked by an asterisk, are doubly degenerate.

Re(ltc)

2.631024

20.01864
20.01864
20.04439
20.04439
20.16824 (*)
20.18223
20.18223
20.21646
20.21646
20.78298
20.78298
20.81721
20.81721
20.83120 (*)
20.95505
20.95505
20.98080
20.98080
20.99969
04620
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Ẑ•fW 12cW 52
2p

F0
L̂• IW, ~36!

whereẐ andL̂ areN3N matrices, the forms of which can b
deduced from Eq.~35!. Note thatL̂ is just the inductance
matrix with the self-inductanceL along the diagonal, and th
mutual inductance2M on either side of the diagonal~along
with the constraint of periodic boundary conditions!.

We can write Eq.~36! in a dimensionless form as follows
Factor outL from the inductance matrix, and define a dime
sionless mutual inductancemL[M /L. Then write L̂5LX̂
and we now have

Ẑ•fW 12cW 52
2pL

F0
X̂• IW.

Define the dimensionless mesh current matrixiW[ IW/I cx .
Then

Ẑ•fW 12cW 52
2pLI cx

F0
X̂• iW52bLX̂• iW. ~37!

We can also write Eqs.~19! and~20! in matrix form. Define
iWB[ IWB /I cx to be the dimensionless bias current matrix, a
let sinfW (sincW ) be the notation denoting the matrix whos
elements are sinfj(sincj). Then we have

iWB1ẐTr
• iW2sinfW 2

dfW

dt
2bc

d2fW

dt2
50, ~38!

iW2a sincW 2
dcW

dt
2bc

d2cW

dt2
50, ~39!

FIG. 9. Agreement between two~out of the set of 4N) numeri-
cal Floquet exponents for a five-cell periodic ladder and an anal
result ~solid line! for the exponents based on thevertical junctions
@Eq. ~33!#. This plot demonstrates that the vertical junctions a
responsible for some of the stability of the ladder. These res
correspond toi B510, bL550 andbc51.

l

ng
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FIG. 10. Minimum Floquet exponent for periodic ladders vs the dimensionless, nearest-neighbor mutual inductance.~The results
correspond toi B510, bc510, andbL5100.! The symbols correspond to exponents, for a given value ofmL , that were averaged over man
different values of the run time of the code as well as several different random configurations of initial voltages. The error bars repr
standard deviation of the average exponent. The solid line represents an analytic result@Eq. ~45!# based on a DSG equation for the horizon
junctions.~a! N55. The analytic result predicts stable phase-locked solutions for 0<mL<1. The numerical results exhibit an instabilit
however, formL

(1)<mL<mL
(2) wheremL

(1)50.5 ~solid vertical line! andmL
(2) ~dotted vertical line! is dependent on the starting configuratio

of phases and voltages, as well as on the value ofbL . This instability originates with the vertical junctions.~b! N57. In this case, the
geometry of the ladder leads to a second instability region formL.0.8 ~marked by a solid vertical line! that originates with the horizonta
junctions. The instability nearmL50.5 still exists but is narrower than for the five-cell ladder.~c! N59. The instability due to the horizonta
junctions exists formL.0.67. The instability nearmL50.5 is also still present.
whereẐTr is the transpose ofẐ. As in Sec. III we can elimi-
nate the mesh current from Eqs.~38! and ~39!. Solve Eq.
~37! for iW and substitute into Eqs.~38! and~39!. The result is

bc

d2fW

dt2
1

dfW

dt
1sinfW 1

1

bL
ẐTr

•X̂21
•~ Ẑ•fW 12cW !2 i B50,

~40!

bc

d2cW

dt2
1

dcW

dt
1a sincW 1

1

bL
X̂21

•~ Ẑ•fW 12cW !50.

~41!
04620
Equations~40! and ~41! were solved numerically forfW and
cW as a function of time for random initial values ofdfW /dt

anddcW /dt and initial values offW andcW of zero.
A stability analysis analogous to that in Sec. III yields

bc

d2hW

dt2
1

dhW

dt
1cosfW 0•hW 1

1

bL
ẐTr

•X̂21
•~ Ẑ•hW 12dW !50,

~42!

bc

d2dW

dt2
1

ddW

dt
1a coscW 0•dW 1

1

bL
X̂21

•~ Ẑ•hW 12dW !50.

~43!
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Equations~40!–~43! allow a numerical calculation of the
Floquet exponents as functions ofN, i B , bc , bL , andmL .

Figure 10~a! shows the minimum Floquet exponent as
function of mL for 0<mL<1 for a five-cell periodic ladder
As a theoretical exploration of the behavior of the RC
equations we are content to allowmL to vary over this range
Physically, we know that in a simple ladder array with on
nearest-neighbor mutual inductance, the maximum valu
this ratio is one-half@43#. It may be of interest for experi
mentalists to attempt ways to enhance the mutual inducta
over the self-inductance in order to see if a broader rang
mL values can be sampled.

The small error bars visible in Fig. 10 deserve expla
tion. In order to produce plots that displayed an interest
dependence of the Floquet exponents on the mutual in
tance, we found a rather large value ofbL was necessary
(bL5100). A consequence of such a large self-inductan
we also found, was some small dependence of the num
cally calculated exponents on the run time of the code
well as the values of the initial voltages across the horizo
junctions. We therefore calculated, for each different value
the mutual inductancemL , the exponents for many differen
values of the run time and several different random confi
rations of initial voltages. The symbols in Fig. 10 repres
an average, for a given value ofmL , over these sets of re
sults, and the error bars represent the standard deviatio
the average. The relatively small size of the error bars sh
that the variations in the numerically calculated exponent
small. The behavior has been discussed elsewhere@47#.

In Fig. 10~a!, which corresponds to a periodic ladder wi
N55, we checked that the data formL50 are to a good
approximation given by Eq.~28!, as expected. Interestingly
then, asmL is increased from zero towards 0.5, the stabil
of phase locking increases, while it decreases for increa
mL greater than approximately 0.6. Even more interestin
the behavior of the ladder in the range 0.5<mL&0.6. For
these values of the mutual inductance the ladder is actu
unstable. This is evidenced by very rapidly growing phas
voltages, and mesh currents with time as Eqs.~40! and ~41!
are numerically integrated. ForN55, the lower limit of this
instability region ismL

(1)50.5 independent of other circu
parameters such asbc and bL . The upper limit of this re-
gion, which we denote bymL

(2) , depends on such quantitie
as the value of the starting voltages as well as on the valu
bL . For example, for a fixed set of starting voltages, we fi
thatmL

(2) is a decreasing function ofbL , as shown in Fig. 11.
Also, it is interesting to note that this instability region do
not appear at all if both the phasesand the voltages are
initialized to zero.~See discussion below for the reason f
this behavior.!

Physically, it appears that this instability is due to comp
tition between the self-inductance of a given loop~say, loop
j !, which wishes to have a mesh current with a given se
of circulation, and the mutual inductance of the two neig
boring loops (j 61), which wish to have the mesh current
loop j flow in the opposite sense. Figure 12 shows the s
tially averaged mesh currents for a five-cell ladder as a fu
tion of mL for bc510 andbL5100. The values were pro
04620
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duced by integrating Eqs.~40! and ~41! for 106 time steps
and recording the ending value of the mesh currents base
on the matrix equation

iW52
1

bL
X̂21

•~ Ẑ•fW 12cW !. ~44!

Note that the mesh currents switch sense of circulation~as
represented by the sign change! as mL is increased. In the
instability region the mesh currents essentially diverge as
equations are integrated numerically, and just before the
stability is reached, for 0.45&mL&0.49, the mesh current
are zero. This instability in the vicinity ofmL50.5 also oc-
curs for periodic ladders withN56, 7, 8, and 9, all the lad-

FIG. 11. Evidence that the upper boundary,mL
(2) , of the insta-

bility region due to the vertical junctions is a function of the loo
self-inductance,bL . The value ofmL

(2) was determined by finding
for a fixed starting configuration of voltages and phase differenc
that largest value of the mutual inductance that resulted in an e
nential growth of the phases and voltages.

FIG. 12. Spatially averagedmeshcurrents vs the dimensionles
nearest-neighbor mutual inductance forN55 in a periodic ladder.
~The results correspond tobc510, bL5100.! These quantities
were obtained by starting with a random configuration of pha
and voltages and numerically integrating Eqs.~40! and ~41! for a
long time. Each of the five mesh currents were calculated from
~44! at the end of this time, and then the five values were arithm
cally averaged. All results shown in the figure were obtained
initializing to the same set of random phases and voltages.
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ders we have in fact studied. Indeed, one would expect
competition-induced instability to be independent of ladd
size for the case of nearest-neighbor mutual inductanc
that the onset of the instability should always occur atmL
50.5.

Although, as mentioned above, the seven-cell and n
cell ladders exhibit the instability nearmL50.5 just likeN
55 @see Figs. 10~b! and 10~c!#, they both also have asecond

FIG. 13. Plot of the functiona1
(N) , the effective normal-mode

frequency of the inductively coupled horizontal junctions, vers
the dimensionless nearest-neighbor mutual inductance for three
ferent sized ladders with periodic boundary conditions. Unsta
phase-locked solutions occur ifa1

(N) is negative.
rv

a

th
s
if
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instability region that the five-cell ladder does not exhib
These second instability regions have an onset at a valu
mL

(3).mL
(2) that is dependent on ladder size. These new

stability regions extend up tomL51 and are marked by a
vertical line at the value ofmL

(3) . We now turn to an analytic
calculation of the Floquet exponents, which helps us und
stand the source of these instabilities.

B. Analytical results

We proceed basically the same as for the case of the
inductive ladder with periodic boundary conditions, exce
now we have matrices to manipulate. We start with Eq.~42!

and ignore the effects of the vertical junctions, i.e., letdW
→0. The results for the Floquet exponents in that case a

Re~lm
(M )tc!52

1

2bc
6

1

2bc
ReA124am

(N)S bc

bL
D . ~45!

where we can think of theam
(N) as effectivenormal-mode

frequencies of the inductively coupled horizontal junction
We find

am
(5)5

1

~mL
22mL21!

F2212~12mL!cosS 2pm

N D
12mL cosS 4pm

N D G , ~46!

s
if-

le
am
(7)5

2~mL
221!22~mL

21mL21!cosS 2pm

N D22mL~mL21!cosS 4pm

N D12mL
2 cosS 6pm

N D
mL

312mL
22mL21

, ~47!

and

am
(9)5

2~122mL
2!22~mL

322mL
22mL11!cosS 2pm

N D12mL~mL
21mL21!cosS 4pm

N D
mL

422mL
323mL

21mL11

1

2mL
2~m l21!cosS 6pm

N D22mL
3 cosS 8pm

N D
mL

422mL
323mL

21mL11
. ~48!
he
nd
-

e

These analytic results were used to produce the solid cu
in Figs. 10~a!, 10~b!, and 10~c!.

In contrast to Sec. III where only loop self-inductance w
included, the argument inside the square root of Eq.~45!
could, for particular values ofm, am

(N) , bc andbL , be posi-
tive and larger than one. If this happens, at least one of
Floquet exponents will be positive, signaling unstable pha
locked solutions. In fact, such an instability will occur
es

s

e
e-

am
(N)(mL),0 for any values ofmL , that is, when aneffective

normal-mode frequency goes negative. Plots ofa1
(N) vs mL

for N55, 7, and 9 are shown in Fig. 13. We now see t
reason for the second instability region in the seven- a
nine-cell ladders; them51 normal-mode frequency has in
deed gone negative. We have checked thata0

(N)50 and
am

(N).0 for mÞ1 for N55, 7, and 9. Also notice thata1
(5)

.0 for 0<mL<1. Figure 13 does not, however, explain th
5-14
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instability nearmL50.5, becauseam
(N) is clearly positive in

this region. For an appreciation of the cause of this instab
we must look at the behavior of the vertical junctions.

We return to Eq.~43!, let hW 50 and calculate a set o
effective Floquet exponents for the vertical junctions:

Lm
(M )tc52

1

2bc
6

1

2bc
A124bcFa cosc01

2gm
(N)

bL
G ,

~49!

where, forN55, the geometric factorgm
(N) is

gm
(5)5

mL
423mL

211

125mL
215mL

422mL
5

1

2mL~12mL!cosS 2pm

N D12mL
2 cosS 4pm

N D
2mL

323mL
22mL11

.

~50!

In this case, the vertical junctions will exhibit an expone
tially growing phase difference if

gm
(N),2

abL cosc0

2
. ~51!

Now a plot ofg0
(5) vs mL is shown in Fig. 14. We see that th

function abruptly becomes negative atmL50.5. ~We have
checked thatgm

(5).0 for mÞ0. Also, we see similar behav
ior for the seven- and nine-cell ladders.! If we assume that
cosc0.0, then the vertical junctions will be unstable fo
gm

(N),0. Based on Fig. 14 forN55 we see then that a
instability region will exist for a range ofmL values,mL

(1)

FIG. 14. A plot of the geometry-dependent functiong0
(5) vs the

dimensionless nearest-neighbor mutual inductance for a ladder
N55 and periodic boundary conditions. This function conveys
formation about the stability of thevertical junctions@Eq. ~49!#. A
solution for the phase differences across the vertical junctions
exponentially grows with time occurs ifgm

(5),2abL cosc0/2 for
any m. If we assume that cosc0.0, then we expect an instability
for a range of values ofmL that causesgm

(5) to be negative and to
satisfy this inequality.
04620
y

-

<mL<mL
(2) where it is clear thatmL

(1)50.5. Then, based on
Eq. ~51! and Fig. 14, we see that the value ofmL

(2) will
depend on the value ofa, bL , and cosc0. For example, as
bL increases we expect thatmL

(2) will decrease, i.e., approac
a value of 0.5. This conclusion is indeed in accordance w
the behavior of the numerical exponents, as shown in Fig.
Also, Eq. ~51! suggests that the value ofmL

(2) should also
depend on the value of cosc0. This is relevant to the numeri
cal results in Fig. 10, where we explained that the up
boundary of the instability region nearmL50.5 depends on
the choice of the starting configuration of phases and v
ages. In general, then, it is clear that the instability nearmL

50.5 originates with thevertical junctions and would thus
be missed by an analysis that was based on a DSG equ
for the horizontal phase differences. It is also clear why t
instability does not appear numerically whenboth the Jo-
sephson phases and the voltages across the junctions ar
tialized to zero. In such a scenario, although the horizon
junctions will be active, the only possible solution for th
vertical junctions is to keep zero voltages and Joseph
phases for all times. Since we know this instability is tri
gered by the vertical junctions, the vertical junctions have
change to ‘‘go unstable’’ and thus instability never appea

V. LONG-RANGE INTERACTIONS

A. Numerical results

To allow for mutual inductances of extended range in
periodic ladder, we assume an inductance matrix of the
lowing form:

L jk5H L j 5k

2M j 5k61

2Me2su j 2ku otherwise.

~52!

The formalism of Sec. IV can be applied to this case with
only change being the use of the full inductance matrix. N
that s controls the range of the inductance. Fors→0, we
have ‘‘infinite-range’’ inductance, meaning that the mutu
inductance between cellsj andk( j Þk) is 2M for all k. For
s→` we return to the case of only nearest-neighbor mut
inductances. For 0,s,`, the inductance has a value o
2M for nearest-neighbor cells and then falls off expone
tially with distance for more distant cells.

Our numerical results for the Floquet exponents as a fu
tion of mL for a five-cell periodic ladder are shown in Fig
15. All exponents were calculated for the same random st
ing configuration of voltages, while all phases were initia
ized to zero. A range ofs values was studied. Note that th
inclusion of long-range inductance has not removed the
stability that was apparent in the nearest-neighbor case.
is noticeable in the figure by a gap in the numerical resu
for a range ofmL values. Observation also shows that t
exponents fors510 in the figure are essentially the same
those in Fig. 10~a!, which would correspond tos→`. The

ith
-

at
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range of inductances over which the instability occurs,mL
(1)

<mL<mL
(2) , is dependent ons. As we decreases from s

510 to s50, therebyincreasingthe effective range of the
mutual inductance, the value ofmL

(1) shifts frommL
(1)50.5 to

mL
(1)50.25. That is, as the range of the inductance increa

(s→0), the overall strengthM does not have to be as larg
~compared to case ofs→`) to cause the instability. Reca
that, physically, this instability can be thought of as due t
competition between the mutual and self-inductance in
ladder to configure the mesh currents so as to flow in a
ticular sense. Also note that formL outside the rangemL

(1)

<mL<mL
(2) increasing the range of the inductance genera

reduces the stability of the phase-locked solutions.
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B. Analytical results

Our analysis here is essentially identical to that of the S
IV. By neglecting the vertical junctions entirely, we arrive
a version of the DSG equation that includes long-range
teractions of the Kac-Baker form@23#. The result for the
Floquet exponents is

Re~lm
(LR)tc!52

1

2bc
6

1

2bc
A124am

(5,LR)S bc

bL
D , ~53!

where
am
(5,LR)[

22~11mLe22s!12@11mL~2e22s21!#cosS 2pm

N D12@mL2mLe22s#cosS 4pm

N D
mL

2~123e22s1e24s!2mL~11e22s!21
. ~54!
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Equations~53! and ~54! were used to produce the sol
curves in Fig. 15. The agreement is quite good, except for
instability regions. As in the previous section, the analy
treatment here is based on a DSG equation that ignores
effects of the vertical junctions. Over much of the region
<mL<1 this approximation works very well, but there a
obviously values of the inductance where ignoring the effe
of the vertical junctions has catastrophic effects.

VI. CONCLUSIONS

We have studied the stability of phase-locked solutions
ladder arrays of Josephson junctions under both periodic
open boundary conditions and also in the presence
current-induced magnetic fields. We calculate the Floquet
ponents numerically, based on the RCSJ model, and
analytically. In the case of zero induced magnetic fields,
calculate the exponents analytically based directly on
RCSJ equations, as well as based on a simplified mode
the ladder that leads to a DSG equation for the horizo
junctions only. We find the DSG equation appreciably ov
estimates the exponents in the overdamped~small bc re-
gime! due to the neglect of spatial variations in the deriv
tives of the Josephson phases across the horizontal junct
df j /dt andd2f j /dt2.

The majority of our analytic work in the case of induce
magnetic field effects is limited to a DSG equation for t
horizontal junctions. In the case of only self-inductiv
plaquettes, we find this analytic approach yields good ag
ment with the numerical exponents forbc!bL and bL
!bc . For bc'bL the DSG equation differs from the nu
merical results. Presumably this is from ignoring the effe
of the vertical junctions. When mutual inductance is includ
between plaquettes we find, interestingly, that there
ranges of values of the mutual inductance for which the l
e
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e
e
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-
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e-

s
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der is unstable. Analytic work, based on a DSG for the ho
zontal junctions, agrees reasonably well with the numer
results for those values of inductance that yield stable ph
locking. However, to understand the cause of all the
served instabilities, it is crucial in the analytic work to co
sider the behavior of the vertical junctions.

This work has made a comparison of some aspects of
dynamics of two different nonlinear models: the RCSJ mo
for a ladder geometry, which leads to nonconvex interpart
couplings, and the DSG equation, which has convex in

FIG. 15. Minimum Floquet exponents vs the dimensionless m
tual inductance for a periodic ladder withN55 and for several
different values of the effective ranges of the inductance@see Eq.
~52!#. ~These results correspond toi B510, bc510, bL5100.! s
50 corresponds to infinite-range inductance, ands→` corre-
sponds to the limit of only nearest-neighbor inductance. The s
line represents an analytic result@Eq. ~53!# based on a DSG equa
tion for the horizontal junctions. The instability that occurs ne
mL50.5 for s→` still exists for finites but is shifted to smaller
values ofmL .
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particle couplings. We have used Floquet theory as the pr
by which these two models have been compared. Ther
still more analysis that could be performed here, includin
more detailed study of the behavior of the Floquet expone
throughout thei B , bc , bL , mL , ands parameter space, a
well as a comparison of open and periodic boundary con
tions for the case of mutually inductive ladders. A more d
tailed analytic analysis of the behavior of the vertical jun
tions could also be informative. In general, the more
learn about the dynamics of the ladder array, the better
may also understand more complicated 2D arrays, as
.
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ladder can be thought of as building block of such a lar
array.
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